LINKS A LISTAS DE PUBLICACIONES
PRINCIPALES PUBLICACIONES
Model of strain-related prestress losses in pretensioned simply supported bridge girders [PDF] from utexas.edu
Abstract: Prestressed concrete construction relies on the application of compressive stresses to concrete elements. The prestressing force is typically applied through the tensioning of strands that react against the concrete and induce compression in the concrete. Loss of prestress is the decrease of this pre-applied stress. The conservative estimation of the prestress losses is imperative to prevent undesired cracking of the prestressed element under service loads. A large fraction of the prestress losses is a consequence of concrete deformations. This fraction of the losses can be identified as strain-related losses, and these occur due to instantaneous elastic shortening, and time-dependent creep and shrinkage. Creep and shrinkage of concrete depend on many factors that are extremely variable within concrete structures. The time-dependent behavior of concrete is not well-understood, but recent findings in the topics of concrete creep and shrinkage provide a better understanding of the underlying mechanisms affecting the nature of these two phenomena. However, current design practices and prestress loss estimation methods do not reflect the state-of-the-art knowledge regarding creep and shrinkage. The main objective of this dissertation was the study and estimation of strain-related prestress losses in simply supported pretensioned bridge girders. Simply supported pretensioned girders are widely designed, produced and frequently used in bridge construction. Due to this common use, pretensioned concrete bridge girders has become fairly standardized elements, which results in a reduced variability in the behavior of pretensioned bridge girders, as compare to that of less standardized concrete structures. Hence, a simplified method was calibrated to estimate prestress losses within pretensioned girders to an adequate level of accuracy. To achieve an acceptable accuracy experimental data from the monitoring of pretensioned simply supported girders was used for the calibration of the method. The accuracy of this simplified method is comparable to that achievable using more elaborate methods developed for generic concrete structures.